The Carbaborane Group η^5 -C₂B₉H₉Me₂ as a Spectator and Non-spectator Ligand **in Di- and Tri-metal Complex Chemistry: X-Ray Crystal Structures of** [PPh₄][Co₂W(μ₃-CPh)(CO)₈(η⁵-C₂B₉H₉Me₂)].¹₂CH₂Cl₂, [NEt₄][FeW(μ-CC₆H₃Me₂-2,6)(CO)₅-(p^5 -C₂B₉H₉Me₂)], and [IrW(μ -CC₆H₄Me-4)(CO)₂(PEt₃)₂(p^5 -C₂B₉H₉Me₂)]

Franz-Erich Baumann, Judith A. K. Howard, Rupert J. Musgrove, Paul Sherwood, Miguel A. Ruiz, and F. Gordon A. Stone

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 ITS, U. K.

Salts containing the anions $[W(\equiv CR)(CO)_2(\eta^5-C_2B_9H_9Me_2)] - (R = Ph, C_6H_4Me-2, C_6H_4Me-4, or C_6H_3Me_2-2,6)$ react with $[Co_2(CO)_8]$, $[Fe_3(CO)_{12}]$, or $[IrL_2(\eta^4-C_8H_{12})][PF_6]$ (L = PPh₃, L₂ = Ph₂PCH₂CH₂PPh₂ or bipyridyl) to yield heteronuclear di- and tri-metal compounds in which the carbaborane ligand adopts a variety of bonding modes.

 $C_2B_9H_9Me_2$] (1) react with low-valent metal complexes to formed, and by the character of the alkylidyne groups. As a idyne groups.^{1.2} In some reactions the η^5 -C₂B₉H₉Me₂ ligand accessible with potential for further synthesis. adopts a non-spectator role. We have now found that this Treatment of $(1b)$ with $[Co_2(CO)_8]$, in CH₂Cl₂ at room behaviour dominates the chemistry of these species, and is temperature, affords the trimetal compound **(2)** *via* the

It has been shown that salts $[X][W(\equiv CR)(CO)_2(\eta^5-$ strongly influenced by the different types of metal-metal bond afford heteronuclear dimetal compounds with bridging alkyl- consequence, many new di- and tri-metal complexes are

intermediacy of $(3a)$.[†] The latter may be isolated quantitatively by passing CO gas through $CH₂Cl₂$ solutions of the former.[†] Similar reactions occur between $[C_{2}(CO)_{8}]$ and **(1c)-(lf).** The structure of the salt **(3b)** has been established by X-ray diffraction (Figure 2). \ddagger Although related to that of

t *Selected spectroscopic data* [n.m.r. chemical shifts in p.p.m., coupling constants in Hz, with measurements in CD_2Cl_2 (¹H, $^{11}B-(^{1}H)$, and $^{31}P-(^{1}H)$) or $CD_2Cl_2-CH_2Cl_2$ ($^{13}C-(^{1}H)$). The ^{11}B shifts are positive to high frequency of $BF_3 \cdot Et_2O$ (external) and $31P$ shifts are relative to 85% H₃PO₄ (external)].

Compound (2) (black), v_{CO} (max) 2019m, 1985s, 1963vs, 1937w, and $1877w$ cm⁻¹ (CH₂Cl₂); n.m.r., ¹H, δ -7.75 [q, 1 H, B(H)Co, $J(BH)$ 90] and -7.30 [q, 1 H, B(H)Co, $J(BH)$ 92]; ¹³C-{¹H}, δ 302.8 (μ_3-C) ; ¹¹B, δ 13.9 [B(H)Co, J(BH) 86] and 10.3 [B(H)Co, J(BH) 92]. Compound **(3a)** (brown), v_{CO} (max) 2 075s, 2 036vs, 2 018s, 2 012(sh), 1878m, and 1816w cm⁻¹ (CH₂Cl₂); ¹³C-{¹H} n.m.r., δ 282.0 (μ ₃-C). Compound (5a) (black), v_{CO} (max) 2028vs, 1966s, 1954s, 1940(sh), and 1795m cm⁻¹ (thf); ¹³C-{¹H} n.m.r., δ 388.4 [µ-C, J(WC) 137]. Compound **(5b)** (brown); ¹³C-{¹H} n.m.r., δ 387.9 [µ-C, J(WC) 141]. Compound **(6b)** (red), v_{CO} (max) 2030s, 1971(sh), 1963vs, 1950 (sh), 1892m, and 1759w cm⁻¹ (thf); n.m.r.; ¹H, δ 7.58 (s, 1 H, μ -CHR); ¹³C-{¹H}, δ 116.1 [μ-CHR, $J(WC)$ 46]. Compound (7b) (red), ¹³C-{¹H} n.m.r., δ 270.7 (μ ₃-C). Compound **(8b)** (red brown), n.m.r. $(in C_6D_6); H, \delta -2.4$ [q br, 1 H, B(H)Ir, J(BH) *ca.* 70]; ¹¹B-{¹H}, δ 33.1 [B(H)Ir]; 31P-{lH}, 6 19.7. Compound **(9)** (orange brown), n.m.r.; isomer (i), ¹H, δ -11.51 [d of d, IrH, $J(PH)$ 18 and 12]; $11B-\{1H\}$, δ 34.7 (B-Ir); $31P-\{1H\}$ (-80 °C), δ 38.7 [d, $J(PP)$ 12] and 27.7 (br); ¹³C-{¹H}, δ 271.0 [d, μ -C, J(PC) 29]; isomer (ii), ¹H, δ -12.08 [d of d, IrH, J(PH) 18 and 12]; ¹¹B-{¹H}, δ 29.1 (B-Ir); $3^{1}P-\{1H\}$, δ 27.0 [d, J(PP) 7] and 22.2 (br); $^{13}C-\{1H\}$, δ 267.4 [d, μ -C, J(PC) 301. Compound **(10)** (brown), n.m.r.; isomer (i), IH, 6 -21.3 (s, IrH); ¹¹B-{¹H}, δ 23.2 (B-Ir); ¹³C-{¹H}, δ 278.2 [µ-C, *J*(WC)] 127]; isomer (ii), ¹H, δ -22.6 (s, IrH); ¹¹B-{¹H}, δ 29.2 (B-Ir); ^{13}C -{ ^{1}H }, δ 284.3 (µ-C).

 \pm *Crystal data* for (3b): $[C_{24}H_{20}P][C_{19}H_{20}B_9C_0C_8W]\cdot \frac{1}{2}CH_2Cl_2$, $M =$ 1157, monoclinic, space group $P2_1/c$ (No. 14), $a = 19.705(5)$, $b =$ 13.238(3), $c = 22.224(3)$ \tilde{A} , $\beta = 121.22^{\circ}$, $U = 4.958(2)$ \tilde{A} ³, $Z = 4$, $D_c =$ 1.55 g cm⁻³, $F(000)$ $\dot{2}$ 284, μ (Mo- K_{α}) = 31.6 cm⁻¹, $R = 0.074$ (R_{α}) = 0.067) for **4** 677 absorption corrected intensities, Wyckoff o-scans, 26 $\leq 50^{\circ}$, $I \geq 2.0\sigma(I)$, 293 K, Mo-K_α ($\bar{\lambda} = 0.71069$ Å). Data were collected on a Nicolet P3m diffractometer and the structure solved by Patterson and Fourier methods with refinement by blocked-cascade least- squares.

Crystal data for (5a): $[C_8H_{20}N][C_{18}H_{24}B_9FeO_5W]$, $M = 787.6$,

(4), the product of the reaction of $[C₀(CO)₈]$ with $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$,³ the two structures differ in an important respect. In (4) the η -C₅H₅ group lies on the opposite side of the $Co₂W$ triangle to the triply bridging alkylidyne group, whereas in **(3b)** the isolobal η^5 -C₂B₉H₉Me₂ ligand lies on the same side. Consequently the ready interconversion between **(2)** and **(3a)** in the presence and absence of CO necessitates rotation of the $W(CO)₂(\eta^5-C_2B_9H_9Me_2)$ group about an axis through the tungsten atom and the mid-point of the μ_3 -CCo₂ triangle.

Although **(lg)** does not afford a stable product with $[C_{O_2}(CO)_8]$, it reacts with iron carbonyls ($[Fe_2(CO)_9]$ or $[Fe₃(CO)₁₂]$) in tetrahydrofuran (thf) to give the 32-valence electron dimetal compound (5a),[†] the structure of which has been established by X-ray diffraction. \ddagger This result contrasts with reactions between iron carbonyls and **(le)** or **(If).** The former yields a mixture of (6a) and (7a),⁴ while the latter gives a mixture of the three species (5b), (6b), and (7b).[†] Moreover, in the presence of CO the u-alkylidyne complex (5b) is transformed into the p-alkylidene compound **(6b).** The absence of products structurally akin to **(2), (3), (6),** or **(7)** from reactions employing **(lg)** may be due to the steric constraints imposed by the $CC_6H_3Me_2-2,6$ group.

Treatment of $(1d)$ with $[Ir(PPh_3)_2(\eta^4-C_8H_{12})][PF_6]$, followed by addition of PEt_3 , affords the iridium-tungsten compound **(8).** In solution isomers **(Sa-c)** exist, the proportions of each species being both solvent and temperature

monoclinic, space group Cc (No. 9), $a = 23.498(4)$, $b = 12.109(2)$, $c =$ 13.044(3) \mathring{A} , $\beta = 115.33(2)^\circ$, $U = 3.355(1)$ \mathring{A}^3 , $Z = 4$, $D_c = 1.56$ g cm⁻³, $F(000) = 1568$, $\mu(Mo-K_{\alpha}) = 39.7$ cm⁻¹, $R = 0.024$ $(R_{\alpha}) =$ 0.024) for 3.140 unique absorption corrected intensities $\omega - 2\theta$ scans, $2\theta \le 55^\circ, I \ge 2.0\sigma(I), 293 \text{ K}$.

Crystal data for (8b): $C_{26}H_{52}B_9IrO_2P_2W$, $M = 932.0$, orthorhombic, space group $P2_12_12$ (No. 18), $a = 19.109(7)$, $b = 13.782(3)$, $c =$ 13.367(5) \AA , $U = 3520(2)$ \AA ³ (at 206 K), $Z = 4$, $D_c = 1.76$ g cm⁻³, $F(000) = 1799$, $\mu(Mo-K_{\alpha}) = 72.11$ cm⁻¹, $R = 0.037$ $(R_w = 0.037)$ for 4 128 unique absorption corrected intensities $[2\theta \le 55^\circ, I \ge 2.0\sigma(I),$ 206 K].

Data collection and structure refinements for **(5a)** and **(Sb)** were as for **(3b).** Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

dependent. The structure of $(8b)$ (Figure 3) \ddagger reveals a relatively short Ir-W [2.590(1) **A]** distance. The presence of the three-centre two-electron B-H-Ir bond is confirmed by the $n.m.r.$ data, \dagger and corresponds to incipient oxidativeaddition at the iridium centre. In this context it is interesting that reactions of (1d) with the salts $[IrL_2(\eta^4-C_8H_{12})][PF_6]$ (L₂

 $= Ph_2PCH_2CH_2PPh_2$ or bipyridyl) afford the hydrido-complexes (9) and (10), containing μ - σ , η ⁵-C₂B₉H₈Me₂ ligands with B-Ir *o* bonds. N.m.r. studies reveal that **(9)** and **(10)** form as mixtures of isomers. These differ according to whether the B-Ir bond involves the central boron in the η^5 -face of the ligand, or a boron atom adjacent to a CMe group.

Figure 1. Molecular structure of the anion of $[PPh_4][Co_2W(\mu_3 \widehat{\text{CPh}}$)(CO)₈(η ⁵-C₂B₉H₉Me₂)].¹₂CH₂Cl₂ **(3b)**. Dimensions: W-Co(1) 2.07(1), Co(l)-C(20) 1.93(2), C0(2)-C(20) 1.89(2) A, W-C(20)- 2.769(2), W-Co(2) 2.767(2), Co(1)-Co(2) 2.502(3), W-C(20) $C(21)$ 133(1), $Co(1)-C(20)-C(21)$ 125(1), $Co(2)-C(20)-C(21)$ 125(1), $W-C(5)-O(5)$ 169(2), $W-C(6)-O(6)$ 165(1)°.

Figure 2. Molecular structure of the anion of $[NEt_4][FeW(\mu CC_6H_3Me_2-2,6$ $(CO)_5(\eta^5-C_2B_9H_9Me_2)$ **(5a).** Dimensions: W-Fe 2.600(1), W-C(20) 1.976(6), Fe-C(20) 1.891(5), W-C(6) 1.959(7), Fe \cdots C(6) 2.377(7) Å, W-C(20)-C(21) 143.0(3), W-C(6)-O(6) $165.4(6)$ °.

The results reported herein, as well as those recently reported elsewhere,⁵ demonstrate that the η^5 -C₂B₉H₉Me₂ ligand can play an important role in the synthesis of complexes with heteronuclear metal-metal bonds. Since the various products described can be viewed as polynuclear metal carbaborane clusters, the observed differences in structural

Figure 3. Molecular structure of $[WIr(\mu-CC_6H_4Me-4)(CO)_2$ - $(PEt₃)₂(\eta⁵-C₂B₉H₉Me₂)]$ **(8b)**. Dimensions: W-Ir 2.590(1), W-C(10) 2.06(1), Ir-C(10) 1.95(1), W-C(1) 2.45(1), W-C(2) 2.44(1), W-B(3) 2.37(1), W-B(4) 2.32(1), W-B(5) 2.42(2), Ir-B(4) 2.34(1), Ir-H(4) 1.8 (located from low-angle difference map, but not refined), B(4)-H(4) 1.2, Ir-P(1) 2.258(3), Ir-P(2) 2.257(3) Å, W-C(10)-C(11) 140.3(7), P(1)-Ir-P(2) 95.7(1)°.

type can be rationalised in terms of the particular electronic requirements of the $C_2B_9H_9Me_2$ moiety when associated with different d-metal centres. In this respect the carbaborane 'ligand' can display a greater versatility of bonding modes than the cyclopentadienyl group.

We thank the S.E.R.C. for a research studentship **(P.S.),** the Deutscher Akademischer Austauschdienst for a NATO Fellowship (F.-E.B.) and the **U.S.A.F.** for partial support.

Received, 7th July 1987; Corn. 958

References

- 1 J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. **A.** Stone, *J. Chem. SOC., Dalton Trans..* 1987, 1221; M. Green, J. **A.** K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, *ibid.,* p. 81: M. Green. J. A. K. Howard, A. N. de M. Jelfs, 0. Johnson, and F. G. A. Stone, *ibid.,* p. 73; M. Green, J. A. K. Howard, A. P. James, C. M. Nunn, and F. G. A. Stone, ibid., **p.** 61.
- 2 M. J. Attfield, J. A. K. Howard, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, *J. Chem.* **SOC.,** *Dalton Trans.,* 1987, 2219.
- 3 M. J. Chetcuti. P. A. M. Chetcuti, J. C. Jeffery. R. M. Mills. P. Mitrprachachon, S. J. Pickering, F. G. A. Stone, and P. Woodward, *J. Chem. SOC., Dalton Trans.,* 1982, 699.
- 4 F.-E. Baumann, J. **A.** K. Howard, 0. Johnson, and F. G. **A.** Stone, *J. Chem. SOC., Dalton Trans.,* in the press.
- *5* Y. Do, C. B. Knobler, and M. F. Hawthorne, *J. Am. Chem. SOC.,* 1987, **109,** 1853.